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ABSTRACT. Let M be an R-module and S a semigroup. Our goal is to discuss zero-
divisors of the semigroup module M[S]. Particularly we show that if M is an R-module
and S a commutative, cancellative and torsion-free monoid, then the R[S]-module M[S]
has few zero-divisors of size n if and only if the R-module M has few zero-divisors of
size n and Property (A).

1. INTRODUCTION

Let S be a commutative semigroup and M be an R-module. One can define the semi-
group module M[S] as an R[S]-module constructed from the semigroup S and the R-
module M similar to the standard definition of semigroup rings. Obviously similar to
semigroup rings, the zero-divisors of the semigroup module M[S] are interesting to inves-
tigate ([6, p. 82] and [12]).

We write each element of g∈M[S] as “polynomials” g = m1X s1 +m2X s2 + · · ·+mnX sn ,
where m1, . . . ,mn ∈M and s1, . . . ,sn are distinct elements of S and this representation of
g is called the canonical form of g. For g = m1X s1 +m2X s2 + · · ·+mnX sn , we define the
content of g to be the R-submodule of M generated by the coefficients of g.

Northcott gave a nice generalization of Dedekind-Mertens Lemma as follows: if S is
a commutative, cancellative and torsion-free monoid and M is an R-module, then for all
f ∈ R[S] and g∈M[S], there exists a natural number k such that c( f )kc(g) = c( f )k−1c( f g)
([16]). Dedekind-Mertens Lemma has different versions with various applications ([1],
[2], [3], [8], [9], [15], [18], [19], and [20]). One of its interesting consequences is
McCoy’s Theorem on zero-divisors ([6, p. 96] and [14]): If M is a nonzero R-module
and S is a commutative, cancellative and torsion-free monoid, then for all f ∈ R[S] and
g ∈M[S]−{0}, if f g = 0, then there exists an m ∈M−{0} such that f ·m = 0.

An R-module M is said to have few zero-divisors of size n, if ZR(M) is a finite union of
n prime ideals p1, . . . ,pn of R such that pi * p j for all i 6= j. Also note that an R-module
M has Property (A), if each finitely generated ideal I ⊆ ZR(M) has a nonzero annihilator
in M. We use McCoy’s Theorem to prove that if M is an R-module and S a commutative,
cancellative and torsion-free monoid, then the R[S]-module M[S] has few zero-divisors of
size n, if and only if the R-module M has few zero-divisors of size n and Property (A).
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In this paper all rings are commutative with identity and all modules are unital1. Unless
otherwise stated, our notation and terminology will follow as closely as possible that of
Gilmer [6].

2. ZERO-DIVISORS OF SEMIGROUP MODULES

Let us recall that if R is a ring and f = a0 + a1X + · · ·+ anXn is a polynomial on the
ring R, then content of f is defined as the R-ideal, generated by the coefficients of f , i.e.
c( f ) = (a0,a1, . . . ,an). The content of an element of a semigroup module is a natural
generalization of the content of a polynomial as follows:

Definition 1. Let M be an R-module and S be a commutative semigroup. Let g ∈ M[S]
and put g = m1X s1 +m2X s2 + · · ·+mnX sn , where m1, . . . ,mn ∈M and s1, . . . ,sn ∈ S. We
define the content of g to be the R-submodule of M generated by the coefficients of g, i.e.
c(g) = (m1, . . . ,mn).

Theorem 2. Let S be a commutative monoid and M be a nonzero R-module. Then the
following statements are equivalent:

(1) S is a cancellative and torsion-free monoid.
(2) For all f ∈ R[S] and g ∈M[S], there is a natural number k such that c( f )kc(g) =

c( f )k−1c( f g).
(3) (McCoy’s Property) For all f ∈ R[S] and g ∈ M[S]−{0}, if f g = 0, then there

exists an m ∈M−{0} such that f ·m = 0.
(4) For all f ∈ R[S], AnnM(c( f )) = 0 if and only if f /∈ ZR[S](M[S]).

Proof. (1)→ (2) has been proved in [16].

For (2)→ (3), assume that f ∈ R[S] and g ∈ M[S]−{0}, such that f g = 0. So there
exists a natural number k such that c( f )kc(g) = c( f )k−1c( f g) = (0). Take t the smallest
natural number such that c( f )tc(g) = (0) and choose m a nonzero element of c( f )t−1c(g).
It is easy to check that f ·m = 0.

For (3)→ (1), we prove that if S is not cancellative or not torsion-free then (1) cannot
hold. For the moment, suppose that S is not cancellative, so there exist s, t,u ∈ S such that
s+ t = s+u while t 6= u. Put f = X s and g = (qX t−qXu), where q is a nonzero element
of M. Then obviously f g = 0, while f ·m 6= 0 for all m ∈M−{0}. Finally suppose that
S is cancellative but not torsion-free. Let s, t ∈ S be such that s 6= t, while ns = nt for
some natural n. Choose the natural number k minimal so that ks = kt. Then we have
0 = qXks−qXkt = (∑k−1

i=0 X (k−i−1)s+it)(qX s−qX t), where q is a nonzero element of M.
Since S is cancellative, the choice of k implies that (k− i1−1)s+ i1t 6= (k− i2−1)s+ i2t

for 0 ≤ i1 < i2 ≤ k− 1. Therefore ∑
k−1
i=0 X (k−i−1)s+it 6= 0, and this completes the proof.

(3)↔ (4) is obvious. �

Corollary 3. Let M be an R-module and S be a commutative, cancellative and torsion-
free monoid. Then the following statements hold:
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(1) R is a domain if and only if R[S] is a domain.
(2) If p is a prime ideal of R, then p[S] is a prime ideal of R[S].
(3) If p is in AssR(M), then p[S] is in AssR[S](M[S]).

Definition 4. Let M be an R-module and P be a proper R-submodule of M. P is said to be
a prime submodule (primary submodule) of M, if rx ∈ P implies x ∈ P or rM ⊆ P (there
exists a natural number n such that rnM ⊆ P), for each r ∈ R and x ∈M.

Corollary 5. Let M be an R-module and S be a commutative, cancellative and torsion-
free monoid. Then the following statements hold:

(1) (0) is a prime (primary) submodule of M if and only if (0) is a prime (primary)
submodule of M[S].

(2) If P is a prime (primary) submodule of M, then P[S] is a prime (primary) submod-
ule of M[S].

In [5], it has been defined that a ring R has few zero-divisors, if Z(R) is a finite union
of prime ideals. We give the following definition and prove some interesting results about
zero-divisors of semigroup modules. Modules having (very) few zero-divisors, introduced
in [15], have also some interesting homological properties [17].

Definition 6. An R-module M has very few zero-divisors, if ZR(M) is a finite union of
prime ideals in AssR(M).

Remark 7. Examples of modules having very few zero-divisors. If R is a Noetherian
ring and M is an R-module such that AssR(M) is finite, then obviously M has very few
zero-divisors. For example AssR(M) is finite if M is a finitely generated R-module [13, p.
55]. Also if R is a Noetherian quasi-local ring and M is a balanced big Cohen-Macaulay
R-module, then AssR(M) is finite [4, Proposition 8.5.5, p. 344].

Remark 8. Let R be a ring and consider the following three conditions on R:
(1) R is a Noetherian ring.
(2) R has very few zero-divisors.
(3) R has few zero-divisors.

Then, (1)→ (2)→ (3) and none of the implications are reversible.

Proof. For (1)→ (2) use [13, p. 55]. It is obvious that (2)→ (3).
Suppose k is a field, A = k[X1,X2,X3, . . . ,Xn, . . .] and m = (X1,X2,X3, . . . ,Xn, . . .) and

at last a = (X2
1 ,X

2
2 ,X

2
3 , . . . ,X

2
n , . . .). Since A is a domain, A has very few zero-divisors

while it is not a Noetherian ring. Also consider the ring R = A/a. It is easy to check
that R is a quasi-local ring with the only prime ideal m/a and Z(R) = m/a and finally
m/a /∈ AssR(R). Note that AssR(R) = /0 [15]. �

Theorem 9. Let M be an R-module and S a commutative, cancellative and torsion-free
monoid. Then the R[S]-module M[S] has very few zero-divisors, if and only if the R-module
M has very few zero-divisors.

Proof. (←): Let ZR(M) = p1∪p2∪ ·· · ∪pn, where pi ∈ AssR(M) for all 1 ≤ i ≤ n. We
will show that ZR[S](M[S]) = p1[S]∪p2[S]∪·· ·∪pn[S]. Let f ∈ ZR[S](M[S]), so there exists
an m ∈M−{0} such that f ·m = 0 and so c( f ) ·m = (0). Therefore c( f ) ⊆ ZR(M) and
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this means that c( f )⊆ p1∪p2∪·· ·∪pn and according to the Prime Avoidance Theorem,
we have c( f )⊆ pi, for some 1≤ i≤ n and therefore f ∈ pi[S]. Now let f ∈ p1[S]∪p2[S]∪
·· · ∪pn[S], so there exists an i such that f ∈ pi[S], so c( f ) ⊆ pi and c( f ) has a nonzero
annihilator in M and this means that f is a zero-divisor of M[S]. Note that by Corollary 3,
pi[S] ∈ AssR[S](M[S]) for all 1≤ i≤ n.
(→): Let ZR[S](M[S]) = ∪n

i=1Qi, where Qi ∈ AssR[S](M[S]) for all 1≤ i≤ n. Therefore
ZR(M) = ∪n

i=1(Qi∩R). Without loss of generality, we can assume that Qi∩R * Q j ∩R
for all i 6= j. Now we prove that Qi∩R ∈ AssR(M) for all 1 ≤ i ≤ n. Consider g ∈M[S]
such that Qi = Ann(g) and g = m1X s1 +m2X s2 + · · ·+mnX sn , where m1, . . . ,mn ∈M and
s1, . . . ,sn ∈ S. It is easy to see that Qi∩R = Ann(c(g)) ⊆ Ann(m1) ⊆ ZR(M) and by the
Prime Avoidance Theorem, Q1∩R = Ann(m1). �

In [11], it has been defined that a ring R has Property (A), if each finitely generated
ideal I ⊆ Z(R) has a nonzero annihilator. We give the following definition:

Definition 10. An R-module M has Property (A), if each finitely generated ideal I ⊆
ZR(M) has a nonzero annihilator in M.

Remark 11. If the R-module M has very few zero-divisors, then M has Property (A).

Theorem 12. Let S be a commutative, cancellative and torsion-free monoid and M be an
R-module. The following statements are equivalent:

(1) The R-module M has Property (A).
(2) For all f ∈ R[S], f is M[S]-regular if and only if c( f ) is M-regular.

Proof. (1)→ (2): Let the R-module M have Property (A). If f ∈R[S] is M[S]-regular, then
f ·m 6= 0 for all nonzero m∈M and so c( f ) ·m 6= (0) for all nonzero m∈M and according
to the definition of Property (A), c( f ) 6⊆ ZR(M). This means that c( f ) is M-regular. Now
let c( f ) be M-regular, so c( f ) 6⊆ ZR(M) and this means that c( f ) ·m 6= (0) for all nonzero
m ∈M and hence f ·m 6= 0 for all nonzero m ∈M. Since S is a commutative, cancellative
and torsion-free monoid, f is not a zero-divisor of M[S], i.e. f is M[S]-regular.

(2)→ (1): Let I be a finitely generated ideal of R such that I ⊆ ZR(M). Then there
exists an f ∈ R[S] such that c( f ) = I. But c( f ) is not M-regular, therefore according to
our assumption, f is not M[S]-regular. Therefore there exists a nonzero m ∈M such that
f ·m = 0 and this means that I ·m = (0), i.e. I has a nonzero annihilator in M. �

Let, for the moment, M be an R-module such that the set ZR(M) of zero-divisors of
M is a finite union of prime ideals. One can consider ZR(M) = ∪n

i=1pi such that pi *
∪n

j=1∧ j 6=ip j for all 1 ≤ i ≤ n. Obviously we have pi * p j for all i 6= j. Also, it is easy to
check that, if ZR(M) = ∪n

i=1pi and ZR(M) = ∪m
k=1qk such that pi * p j for all i 6= j and

qk * ql for all k 6= l, then m = n and {p1, . . . ,pn} = {q1, . . . ,qn}, i.e. these prime ideals
are uniquely determined (Use the Prime Avoidance Theorem). This is the base for the
following definition:

Definition 13. An R-module M is said to have few zero-divisors of size n, if ZR(M) is a
finite union of n prime ideals p1, . . . ,pn of R such that pi * p j for all i 6= j.
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Theorem 14. Let M be an R-module and S a commutative, cancellative and torsion-free
monoid. Then the R[S]-module M[S] has few zero-divisors of size n, if and only if the
R-module M has few zero-divisors of size n and Property (A).

Proof. (←): By considering the R-module M having Property (A), similar to the proof of
Theorem 9, we have if ZR(M) = ∪n

i=1pi, then ZR[S](M[S]) = ∪n
i=1pi[S]. Also it is obvious

that pi[S] ⊆ p j[S] if and only if pi ⊆ p j for all 1 ≤ i, j ≤ n. These two imply that the
R[S]-module M[S] has few zero-divisors of size n.

(→): Note that ZR(M)⊆ ZR[S](M[S]). It is easy to check that if ZR[S](M[S]) = ∪n
i=1Qi,

where Qi are prime ideals of R[S] for all 1 ≤ i ≤ n, then ZR(M) = ∪n
i=1(Qi ∩R). Now

we prove that the R-module M has Property (A). Let I ⊆ ZR(M) be a finite ideal of R.
Choose f ∈ R[S] such that I = c( f ). So c( f )⊆ ZR(M) and obviously f ∈ ZR[S](M[S]) and
according to McCoy’s property, there exists a nonzero m ∈ M such that f ·m = 0. This
means that I ·m = 0 and I has a nonzero annihilator in M. Consider that by a similar
discussion in (←), the R-module M has few zero-divisors obviously not less than size n
and this completes the proof. �

An R-module M is said to be primal, if ZR(M) is an ideal of R [5]. It is easy to check
that if ZR(M) is an ideal of R, then it is a prime ideal and therefore the R-module M is
primal if and only if M has few zero-divisors of size one.

Corollary 15. Let M be an R-module and S a commutative, cancellative and torsion-free
monoid. Then the R[S]-module M[S] is primal, if and only if the R-module M is primal
and has Property (A).
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